Modeling of peptides based on heterocycle substituted non-protein amino acid, synthesis and in vitro study of their impact on collagenase activity

T.H. Sargsyana,b, Yu.M. Danghyana, A.S. Sargsyana, S.M. Jamgaryana, E.A. Gyulumyana, N.A. Hovhannisyan a,b, A.S. Saghyana,b

aScientific and Production Center “Armbiotechnology” NAS RA, 14 Gyurjian Str. 0056, Yerevan, Armenia
bYerevan State University, Republic of Armenia, Yerevan, 0025, 1 A. Manoogian
E-mail: tatev-sargsyan-1984@mail.ru

More than 15 new peptides have been constructed on the basis of (S)-\(\beta\)-[4-allyl-3-propyl-5-thioxo-1,2,4-triazol-1-yl]-\(\alpha\)-alanine non-protein amino acid by ChemOffice software. The study of their possible interaction with collagenase enzyme was implemented by molecular docking program – AutoDockVina software. Analyzing the obtained results, 9-fluorenylemethoxycarbonylglucyl-(S)-\(\beta\)-[4-allyl-3-propyl-5-thioxo-1,2,4-triazol-1-yl]-\(\alpha\)-alanine dipeptide was identified by maximum values of Gibbs free energy (\(\Delta G\)) and minimum values of inhibition constant (\(K_I\)) of ligand-macromolecular interaction (Fig. 1). The synthesis of the mentioned dipeptide was implemented by the method of activated esters (Scheme 1) [1].

\textit{Scheme 1}

\begin{equation}
\Delta G \approx -8.1; \ K_I \approx 1.16
\end{equation}

\textit{Fig. 1.}

The impact of synthesized peptide on collagenase enzyme activity was studied \textit{in vitro} using various peptide concentrations, and the data were presented in the Table. Besides, IC\textsubscript{50} of peptide having an impact was determined, which was 0.982 μmol/l.

<table>
<thead>
<tr>
<th>Concentration, μmol/l</th>
<th>Inhibition %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6708</td>
<td>43.82</td>
</tr>
<tr>
<td>1.3417</td>
<td>58.33</td>
</tr>
<tr>
<td>2.6834</td>
<td>81.72</td>
</tr>
</tbody>
</table>

\textit{Fig. 2. Graphical curve of IC\textsubscript{50} value}

This work was supported by the RA MES State Committee of Science, in the frames of the research project No. 15T-21215.