Solid Supported Hayashi-Jørgensen Catalyst as an Efficient and Recyclable Organocatalyst for Asymmetric Michael Addition Reactions.

Piotr Szcześniaka, Olga Staszewska-Krajewska b, Bartłomiej Furman b, and Jacek Mlynarskia,b

a Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland; b Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

alchemik_84@tlen.pl

A comparison of three different catalytic systems for the efficient, asymmetric synthesis of compound 1 (BZN) is described. (BZN) exhibits interesting binding to HIV-1 protease. The presented strategy is based on organocatalytic Michael addition of aldehyde 2 to \textit{trans}-nitroalkene 3, and subsequent reductive cyclization. High yields, enantio-, and diastereoselectivities were achieved in the Michael addition by application of a POSS- or Wang resin-supported Hayashi-Jørgensen catalyst.

The author is grateful to Polish National Science Center for financial support of the research (\textit{Fuga 4 Grant No. DEC-2015/16/S/ST5/00440}).