Self-assembled composites of anionic Zn(salen) complexes and triphenylmethane derived polycations as catalysts for the addition of CO$_2$ to epoxides

Svetlana A. Kuznetsova,[a] Yuri A. Rulev,[a] Vladimir A. Larionov,[a,b]
Alexander F. Smolyakov,[a] Yan V. Zubavichus,[c] Victor I. Maleev,[a] Han Li,[d]
Michael North,[d] Ashot S. Saghyan,[e] and Yuri N. Belokon[a]

[a]Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Moscow, Russian Federation.
[b]Department of Inorganic Chemistry People’s Friendship University of Russia, Moscow, Russian Federation.
[c]National Research Center “Kurchatov Institute”, Moscow, Russian Federation.
[d]Green Chemistry Centre of Excellence, Department of Chemistry University of York, York, UK.
[e]Institute of Pharmacy of the Yerevan State University, Yerevan, Armenia

swetkuznetsova@yandex.ru

The combination of compounds 1 and 2 in different proportions generated a set of assembled supramolecular ionic composites (3-5) (Scheme 1).

Scheme 1.

For compound 3, the crystal structure is determined (Figure 1). It is constructed of rather short layers of polyanions composed of several molecules of 2 interconnected by their sulphonate groups coordinated at the apical positions of the neighboring central metal ions. The countercations of 1 were positioned between the layers. The powder X-ray diffraction pattern of composite 3 is shown in Figure 2. The experimental (blue curve) and calculated based on the single-crystal X-ray structure (red curve) powder patterns are similar. Composite 3 was also analysed by nitrogen porosimetry. It was found to contain mesopores and macropores with a BJH adsorption average pore radius of 10.4 nm, a BET surface area of 39.3 m2 g$^{-1}$ and a BJH adsorption pore volume of 0.2 cm3 g$^{-1}$.

Figure 1. Figure 2.

The heterogeneous system 5 was catalytically competent in the reaction between styrene oxide and carbon dioxide and its activity also increased on its reuse.

Financial support by the RFBR (Grant № 18-53-05004 Arm_a) is gratefully acknowledged.