Dynamic Cross-Linking of Polyethylene via Sextuple Hydrogen Bonding Array

Jonathan Tellers†‡, Stefano Canossa, Jérôme Vachon†, Maria Soliman†, Roberta Pinalli‡ and Enrico Dalcanale‡

†SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, Geleen, The Netherlands
‡Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A

Jonathan.Tellers@studenti.unipr.it

Multiple hydrogen bonding motifs are promising tools for polymer functionalization to obtain adaptable networks combining advantages of permanent cross-linked systems with processability of thermoplastics. We describe the use of a new multiple hydrogen bonding motif to impart increased tensile strength, stiffness, melt strength, barrier properties and a plateau modulus after melting to functional polyolefins, while retaining adaptability of the polymer network. The cross-linked nature of these polymers was elucidated by thermal and mechanical analysis, revealing a raised glass transition and rheology similar to permanently cross-linked polymer matrices. The apolar polymer matrix was found to stabilize the new hydrogen bonding motif at elevated temperatures. The resulting polymer showed thermal resistance superior to ureidopyrimidone (UPY) motif functionalized materials, the most commonly employed synthetic multiple hydrogen bonding motif to date.

Acknowledgements:

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 642929. The financial support from SABIC is gratefully acknowledged. We thank Peter Neuteboom (SABIC) for providing PE-HEMA copolymers.

Figure 1. TOC graphic illustrating the increased melt strength as a result of functionalization with sextuple hydrogen-bonding motif