Non-innocent role of the CNHC ligand on the isomerization of cationic [Ir(CNHC)(CH₃CN)₂(PR₃)]⁺ complex: A DFT Approach

Silvia Carlotto, a and Amalia I. Poblador-Bahamonde b

a) Department of Chemical Sciences, Università di Padova, Italia
b) Organic Chemistry Department, University of Geneva, Switzerland

Amalia.PobladorBahamonde@unige.ch

The dihydrido-iridium (III) cationic complex A has proved to be an excellent catalyst especially in alkene and imine hydrogenations.¹, ² Its reaction with an excess of ethylene followed by diallylamine leads to a mixture of two isomeric compounds, B-kin and B-ther, which slowly evolves at room temperature to the thermodynamic isomer B-ther.³ Such an isomerization seems to entail a non-innocent role of the NH moiety since the analogous reaction in the presence of methyldiallylamine forms an analogue of B-kin as single and final product. The use of Density Functional Theory (DFT) to study elementary steps such as solvent dissociation, NH protonation and deprotonation, and proton shuttled tautomerizations is in process and aims the rationalization of the formation of B-ther and its reactivity.

![Figure 1 - Synthesis and isomerization of Iridium B-kin and B-ther isomers from [IrH₂(NCMe)₂(PPr₃)]⁺ complex.](image)

3. Salom, A.; Martín, M.; Sola, E.; unpublished results